
Reprinted from the

Proceedings of the
Linux Symposium

Volume Two

July 21th–24th, 2004
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Jes Sorensen,Wild Open Source, Inc.
Matt Domsch,Dell
Gerrit Huizenga,IBM
Matthew Wilcox,Hewlett-Packard
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.



kobjects and krefs
lockless reference counting for kernel structures

Greg Kroah-Hartman∗

Linux Technology Center
IBM Corp.

greg@kroah.com

gregkh@us.ibm.com

Abstract

This paper will describe the current kobject and
kref kernel structures in detail. It will cover
why they were created, how to use them, and
how the internals work. It will also cover a few
directions that these structures might be taking
in the future.

1 Introduction

The Linux kernel file Documentation/
CodingStyle has the following statement
about reference counting:

Data structures that have visibil-
ity outside the single-threaded en-
vironment they are created and de-
stroyed in should always have refer-
ence counts. In the kernel, garbage
collection doesn’t exist (and outside
the kernel garbage collection is slow
and inefficient), which means that
you absolutely _have_ to reference
count all your uses.

This requirement of providing proper refer-
ence counting for kernel structures has caused

∗This work represents the view of the author and
does not necessarily represent the view of IBM.

developers to create their own logic and
functions to implement this feature. Dur-
ing the development of the Linux Kernel
Driver model[4], a simple structure,struct
kobject , was created that provided auto-
matic reference counting for any user of the
object. Unfortunately,struct kobject is
closely tied to the kernel driver model, and for
any data structure that does not want to show
up in sysfs, and participate in the global kernel
“web woven by a spider on drugs”[2], using
a struct kobject only for reference counting is
a big waste of memory resources and is much
more complex than needed. To this end, the
data structure,struct kref , was created
to provide a simple, and hopefully failproof
method of adding proper reference counting to
any kernel data structure.

2 How to use it

To use thestruct kref structure, simply
embed it within the structure that reference
counting is needed for. For example, to add ref-
erence counting to a structure calledstruct
foo then it would be defined as:

struct foo {
...
struct kref kref;
...



296 • Linux Symposium 2004 • Volume Two

};

It is not important that thestruct kref
structure be the first or last element of the
structure that it is embedded in. The only re-
quirement is that the wholestruct kref
structure be in the structure being reference
counted, not a pointer to the astruct kref
structure.

When thestruct foo structure is initial-
ized, thekref variable must also be initialized
before reference counting can be used. This is
done with a call to thekref_init function:

struct foo *foo;
foo = kmalloc(sizeof(*foo),

GFP_KERNEL);
kref_init(&foo->kref,

foo_release);

The parameterfoo_release is a pointer
The first parameter ofkref_init is a pointer
to the struct kref structure that is to be
initialized. The second parameter is a pointer
to the release function for the structure. This
release function is described in detail below.

After the kref structure has been initialized, the
internal reference count of the structure is set to
1. Now the reference count can be incremented
and decremented at will.

To increment the reference count of a kref
structure, the functionkref_get is called:

/* get a new reference to our
foo structure */

kref_get(&foo->kref);

When a user of the structure is finished with
it, thekref_put function should be called to
release the reference:

/* finished with this

foo structure */
kref_put(&foo->kref);

This function should also be called after the
original creator of the structure that the kref
variable is in, is finished with the structure. The
kfree function mustNOT be directly called
because other portions of the kernel could have
valid references to this structure.

After the kref_put function is called, the
structure can not be referred to by any future
code, as the memory for that structure could be
now gone.

When the last reference count is released, the
function that was passed to the originalkref_
init function is called to release the mem-
ory used by the structure. The prototype of this
function must accept a pointer to astruct
kref :

void foo_release(struct kref
*kref)

{
struct foo *foo;

foo = container_of(foo,
struct foo,
kref);

kfree(foo);
}

As the above example function shows, to
get back to the originalstruct foo struc-
ture location, thecontainer_of macro is
used. For a complete description of how the
container_of macro works, please see[1].

As there are not any locks within thekref
structure, there are three rules that need to be
followed when using this reference counting
logic:

• If the code accessing the variable already
has a valid reference to the structure, it is



Linux Symposium 2004 • Volume Two • 297

safe, and required to increment that ref-
erence with a call tokref_get in order
to give the variable to any other piece of
code.

• If the code accessing the variable already
has a valid reference to the structure, then
it is safe to release that reference with a
call tokref_put .

• If the code wanting to access the variable,
does not have a valid reference, then it
needs to serialize with a place within the
code where the last call tokref_put put
could happen.

This last rule can not be emphasized enough.
The only reason that thestruct kref can
work without any internal locks is because a
call to kref_get can not happen at the same
time thatkref_put is happening. In order to
ensure this, a simple lock for the driver or sub-
system that owns the specificstruct kref
reference can be used.

An example of using such a lock can be seen in
Figure 1.

So, with the three simple functions,kref_
init , kref_get , and kref_put , com-
bined with a release function that the caller
provides, complete reference counting can be
added to any kernel structure.

3 How it works

struct kref is a very tiny structure with
only two elements:

struct kref {
atomic_t refcount;
void (*release)(struct kref *kref);

};

The refcount variable is an atomic counter
that is used to hold the reference count of the

structure. Therelease variable is a pointer
to a function that will be called when the last
user of the structure is finished with the struc-
ture.

Thekref_init function is a mere three lines
long:

void kref_init(struct kref *kref,
void (*release)
(struct kref *kref))

{
WARN_ON(release == NULL);
atomic_set(&kref->refcount,1);
kref->release = release;

}

First a warning is printed out to the syslog if
a release callback is not provided, as this
is not allowed. Then therefcount vari-
able is initialized to 1 as the structure needs to
have a single initial reference count. After that
the release function pointer is stored in the
release variable in the structure.

The kref_get function is also only three
lines of code:

struct kref *kref_get(struct kref *kref)
{

WARN_ON(!atomic_read(&kref->refcount));
atomic_inc(&kref->refcount);
return kref;

}

Again, a warning is printed out to the syslog if
the refcount variable is zero. This catches
the very common error of callingkref_get
without first callingkref_init . After that,
the refcount variable is incremented, and
then a pointer to the same structure is returned.
This return type makes it easier for code to do
things pass the result ofkref_get as a func-
tion parameter:

do_foo(kref_get(my_kref));

Keeping with the tradition of tiny functions, the
kref_put function weighs in at a whopping
two lines:



298 • Linux Symposium 2004 • Volume Two

/* prevent races between open() and disconnect() */
static DECLARE_MUTEX (disconnect_sem);

static int skel_open(struct inode *inode, struct file *file)
{

struct usb_skel *dev;
struct usb_interface *interface;

/* prevent disconnects */
down (&disconnect_sem);

interface = usb_find_interface(&skel_driver, iminor(inode));
dev = usb_get_intfdata(interface);

/* increment our usage count for the device */
kref_get(&dev->kref);
up(&disconnect_sem);

...
}

static void skel_disconnect(struct usb_interface *interface)
{

struct usb_skel *dev;
int minor = interface->minor;

/* prevent skel_open() from racing skel_disconnect() */
down (&disconnect_sem);

dev = usb_get_intfdata(interface);
usb_set_intfdata(interface, NULL);

/* give back our minor */
usb_deregister_dev(interface, &skel_class);

/* decrement our usage count */
kref_put(&dev->kref);

up(&disconnect_sem);
}

Figure 1: Using a lock to ensure safe access tokref_put

void kref_put(struct kref *kref)
{

if (atomic_dec_and_test
(&kref->refcount))

kref->release(kref);
}



Linux Symposium 2004 • Volume Two • 299

This function decrements the value stored in
the refcount variable, and if the result is
zero, this was the last reference to the struc-
ture, so the function stored in therelease
variable is called to clean up the memory used
by this structure.

4 kref vs. kobject

This paper has focused on on howstruct
kref works, and ignored struct
kobject . For the most part, both struc-
tures work identically, with the following
minor differences:

• struct kobject does not contain a
release function. When astruct
kobject ’s last reference count is decre-
mented, the release function of the
struct kset that is associated with
the struct kobject is called. For
more details on howstruct kobject
andstruct kset is related, please see
[3].

• A struct kobject can be ini-
tialized with two different functions,
kobject_register or kobject_
init . kobject_register calls
kobject_init and then calls
kobject_add to add the kobject
to the sysfs hierarchy. If astruct
kobject is to not be used within the
sysfs hierarchy, thenkobject_add
should never be called.

• A struct kobject can have its ref-
erence count incremented with a call to
kobject_get and decremented with
a call to kobject_put . But if the
kobject was initialized with the sysfs
core with a call to eitherkobject_
add or kobject_register , then it
needs to be removed from it with a

call to kobject_del , which will also
call kobject_put on the struct
kobject . After a struct kobject
has hadkobject_del called for it,
the kboject_get function can not be
called on the variable without having a
previous reference count already on the
variable. This is the same as the previ-
ously mentioned issue for callingkref_
put without serializing the access.

• Before using astruct kobject , the
structure must be initialized to zero by us-
ing memset beforekobject_init or
kobject_register is called. If not, a
warning will be printed out to the syslog.

5 Future

In future releases of the Linux kernel, the
struct kobject will probably loose its in-
ternal reference count and use thestruct
kref instead. If this happens,struct
kref might have to be changed in order to
support passing therelease callback as a pa-
rameter to thekref_put function, in order
to save the storage size of the function pointer
from the structure.

Other kernel uses of aatomic_t variable
will probably be converted to use thestruct
kref interface instead of providing their own
logic to handle reference counting.

6 Legal Statement

IBM is a registered trademark of International Busi-
ness Machines in the United States and/or other
countries.

Linux is a registered trademark of Linus Torvalds

Other company, product, and service names may be
trademarks or service marks of others.



300 • Linux Symposium 2004 • Volume Two

References

[1] Greg Kroah-Hartman. The Driver Model
Core, part 1.
http://www.linuxjournal.com/
modules.php?op=modload&name=
NS-lj-issues/is%sue110&file=
6717s2 , June 2003.

[2] Linux Weekly News - Driver porting:
Device model overview.http:
//lwn.net/Articles/31185/ .

[3] Linux Weekly News - The zen of
kobjects.http:
//lwn.net/Articles/51437/ .

[4] Patrick Mochel. The Linux Kernel Device
Model. InLinux.conf.au, Perth, Australia,
January 2003.


